Krzysztof Strasburger, PhD, DSc
Faculty, Strasburger Group
Email: strasbur@chkw386.ch.pwr.wroc.pl
Office:A-3 / 301c
Phone:+48 71 320 2675
Office hours:Mo. 11-13, Tu. 9-11

Theoretical chemist with research interests in formalism of explicitly correlated wave functions and its applications in studies of stability and properties of positronic atoms and molecules, interaction of antihydrogen with normal matter and electrooptic properties of spatially confined molecules.

PapersMonographs

(1)
Cioslowski, J.; Strasburger, K. Five- and six-electron harmonium atoms: Highly accurate electronic properties and their application to benchmarking of approximate 1-matrix functionals. J. Chem. Phys. 2018, 148 (14), 144107. https://doi.org/10.1063/1.5021419.
(1)
Chołuj, M.; Bartkowiak, W.; Naciążek, P.; Strasburger, K. On the calculations of the static electronic dipole (hyper)polarizability for the free and spatially confined H−. J. Chem. Phys. 2017, 146 (19), 194301. https://doi.org/10.1063/1.4983064.
(1)
Cioslowski, J.; Strasburger, K. Harmonium atoms at weak confinements: The formation of the Wigner molecules. J. Chem. Phys. 2017, 146 (4), 044308. https://doi.org/10.1063/1.4974273.
(1)
Strasburger, K. The order of three lowest-energy states of the six-electron harmonium at small force constant. J. Chem. Phys. 2016, 144 (23), 234304. https://doi.org/10.1063/1.4953677.
(1)
Strasburger, K. Excited S-symmetry states of positronic lithium and beryllium. J. Chem. Phys. 2016, 144 (14), 144316. https://doi.org/10.1063/1.4945707.
(1)
Strasburger, K. High angular momentum states of lithium atom, studied with symmetry-projected explicitly correlated Gaussian lobe functions. J. Chem. Phys. 2014, 141 (4), 044104. https://doi.org/10.1063/1.4890373.
(1)
Cioslowski, J.; Strasburger, K.; Matito, E. Benchmark calculations on the lowest-energy singlet, triplet, and quintet states of the four-electron harmonium atom. J. Chem. Phys. 2014, 141 (4), 044128. https://doi.org/10.1063/1.4891301.
(1)
Strasburger, K.; Naciążek, P. Electric dipole hyperpolarizability of the beryllium atom in the gas phase and in spatial confinement. J. Phys. B: At. Mol. Opt. Phys. 2014, 47 (2), 025002. https://doi.org/10.1088/0953-4075/47/2/025002.
(1)
Wołcyrz, M. M.; Strasburger, K.; Chojnacki, H. Two-photon annihilation rate of the positronic HCN molecule. Mol. Phys. 2013, 111 (2), 345–352. https://doi.org/10.1080/00268976.2012.726377.
(1)
Góra, R. W.; Zaleśny, R.; Kozłowska, J.; Naciążek, P.; Roztoczyńska, A.; Strasburger, K.; Bartkowiak, W. Electric dipole (hyper)polarizabilities of spatially confined LiH molecule. J. Chem. Phys. 2012, 137 (9), 094307. https://doi.org/doi:10.1063/1.4748144.
(1)
Wołcyrz, M. M.; Strasburger, K. Modified adiabatic method: bound state of the e + HF molecule. J. Phys. B: At. Mol. Opt. Phys. 2012, 45 (8), 085104. https://doi.org/10.1088/0953-4075/45/8/085104.
(1)
Cioslowski, J.; Strasburger, K.; Matito, E. The three-electron harmonium atom: The lowest-energy doublet and quadruplet states. J. Chem. Phys. 2012, 136 (19), 194112. https://doi.org/10.1063/1.4717461.
(1)
Jaszuński, M.; Łach, G.; Strasburger, K. NMR shielding constants in hydrogen molecule isotopomers. Theor. Chem. Acc. 2011, 129 (3–5), 325–330. https://doi.org/10.1007/s00214-010-0786-7.
(1)
Bartkowiak, W.; Strasburger, K. Linear and Nonlinear Electric Properties of Spatially Confined LiH Molecule, Studied with the Finite Field Method. J. Mol. Struct.: THEOCHEM 2010, 960 (1–3), 93–97. https://doi.org/10.1016/j.theochem.2010.08.028.
(1)
Strasburger, K. Modified adiabatic approximation: Charge asymmetry in HD[sup +] and HD. J. Chem. Phys. 2009, 131 (13), 134103. https://doi.org/10.1063/1.3241280.
(1)
Strasburger, K.; WoŁcyrz, M. Theoretical Study of Positronic Atoms with Adiabatic Separation of Positronic Motion. Acta Phys. Polon. A 2008, 113 (5), 1533–1542.
(1)
Strasburger, K.; Wołcyrz, M. Adiabatic method for positronic atoms and molecules. Mol. Phys. 2007, 105 (4), 467–476. https://doi.org/10.1080/00268970701217953.
(1)
Chojnacki, H.; Strasburger, K. Configuration interaction study of the positronic hydrogen cyanide molecule†. Mol. Phys. 2006, 104 (13–14), 2273–2276. https://doi.org/10.1080/00268970600655477.
(1)
Strasburger, K. Born–Oppenheimer potential energy for interaction of antihydrogen with molecular hydrogen. J. Phys. B: At. Mol. Opt. Phys. 2005, 38 (17), 3197. https://doi.org/10.1088/0953-4075/38/17/010.
(1)
Strasburger, K.; Chojnacki, H.; Sokołowska, A. Adiabatic potentials for the interaction of atomic antihydrogen with He and He +. J. Phys. B: At. Mol. Opt. Phys. 2005, 38 (17), 3091. https://doi.org/10.1088/0953-4075/38/17/002.
(1)
Jonsell, S.; Froelich, P.; Eriksson, S.; Strasburger, K. Strong nuclear force in cold antihydrogen-helium collisions. Phys. Rev. A 2004, 70 (6). https://doi.org/10.1103/PhysRevA.70.062708.
(1)
Strasburger, K. Positronic Formaldehyde—the Configuration Interaction Study. Struct. Chem. 2004, 15 (5), 415–420. https://doi.org/10.1023/B:STUC.0000037897.77760.65.
(1)
Strasburger, K. Hydrogen–antihydrogen interaction: spectacular breakdown of the adiabatic approximation. J. Phys. B: At. Mol. Opt. Phys. 2004, 37 (22), 4483. https://doi.org/10.1088/0953-4075/37/22/007.
(1)
Strasburger, K. Dependence of the Static Leptonic Properties on the Internuclear Distance in the H-H and He-H Systems. J. Phys. B: At. Mol. Opt. Phys. 2004, 37 (10), 2211. https://doi.org/10.1088/0953-4075/37/10/016.
(1)
Strasburger, K.; Chojnacki, H. Helium-Antihydrogen Interaction: The Born-Oppenheimer Potential Energy Curve. Phys. Rev. Lett. 2002, 88 (16), 163201. https://doi.org/10.1103/PhysRevLett.88.163201.
(1)
Strasburger, K. Accurate Born–Oppenheimer potential energy curve for the hydrogen–antihydrogen system. J. Phys. B: At. Mol. Opt. Phys. 2002, 35 (19), L435. https://doi.org/10.1088/0953-4075/35/19/103.
(1)
Bartkowiak, W.; Strasburger, K.; Leszczynski, J. Studies of molecular hyperpolarizabilities (β,γ) for 4-nitroaniline (PNA). The application of quantum mechanical/Langevin dipoles/Monte Carlo (QM/LD/MC) and sum-over-orbitals (SOO) methods. J. Mol. Struct. THEOCHEM 2001, 549 (1–2), 159–163. https://doi.org/10.1016/S0166-1280(01)00481-X.
(1)
Strasburger, K. Adiabatic positron affinity of LiH. J. Chem. Phys. 2001, 114 (2), 615. https://doi.org/10.1063/1.1336544.
(1)
Strasburger, K. Why Hylleraas-type functions failed to predict the existence of PsLi+ and 2,3PsHe+? Int. J. Quantum Chem. 2000, 79 (4), 243–252. https://doi.org/10.1002/1097-461X(2000)79:4<243::AID-QUA5>3.0.CO;2-O.
(1)
Strasburger, K. Approximate representation of the molecular electron density: An application to the water dimer and solvated positron. Comput. Chem. 1998, 22 (1), 7–12. https://doi.org/10.1016/S0097-8485(97)00055-7.
(1)
Strasburger, K.; Chojnacki, H. Quantum chemical study of simple positronic systems using explicitly correlated Gaussian functions – PsH and PsLi[sup +]. J. Chem. Phys. 1998, 108 (8), 3218. https://doi.org/10.1063/1.475717.
(1)
Strasburger, K. Quantum chemical study on complexes of the LiH molecule with e+, Ps and Ps− including correlation energy. Chem. Phys. Lett. 1996, 253 (1–2), 49–52. https://doi.org/10.1016/0009-2614(96)00222-9.
(1)
Strasburger, K.; Chojnacki, H. On the reliability of the SCF and CI wavefunctions for systems containing positrons. Chem. Phys. Lett. 1995, 241 (5–6), 485–489. https://doi.org/10.1016/0009-2614(95)00695-Z.
(1)
Strasburger, K.; Sokalski, W. A. Intramolecular electrostatic interactions studied by cumulative atomic multipole moment expansion with improved convergence. Chem. Phys. Lett. 1994, 221 (1), 129–135. https://doi.org/10.1016/0009-2614(94)87028-4.
(1)
Roszak, S.; Strasburger, K.; Chojnacki, H. Quantum-chemical studies of the modification of the inversion-reaction pathway in SH3+ by substitution of hydrogen atoms with lithium atoms. J. Mol. Struct. THEOCHEM 1991, 227, 187–191. https://doi.org/10.1016/0166-1280(91)85283-D.

Your name: *
Your phone: *
Your e-mail: *
Contact Preference:
Title of Message: *
Text: *
Please, Enter the Code