Wojciech Bartkowiak, Prof. PhD, DSc
Bartkowiak Group, Faculty
Email: wojciech.bartkowiak@pwr.edu.pl
Office:A3 / 313
Phone:+48 71 320 2293

Theoretical chemist with interests in molecular nonlinear optics and properties of confined molecules.

Professor Wojciech Bartkowiak joined the Faculty of Chemistry at the Wroclaw University of Science and Technology in 1998 where he is now a Full Professor and the leader of the Department of Physical and Quantum Chemistry (formerly Theoretical Chemistry Group). He co-authored over 120 scientific publications and book chapters. His research focuses on electronic and vibrational structure theory of organic molecules with a special emphasis on multiphoton absorption and the influence of external confinement on molecular properties.

PapersMonographs

(1)
Beerepoot, M. T. P.; Alam, Md. M.; Bednarska, J.; Bartkowiak, W.; Ruud, K.; Zaleśny, R. Benchmarking the Performance of Exchange-Correlation Functionals for Predicting Two-Photon Absorption Strengths. J. Chem. Theory Comput. 2018, 14 (7), 3677–3685.
(1)
Jędrzejewska, B.; Grabarz, A.; Bartkowiak, W.; Ośmiałowski, B. Spectral and physicochemical properties of difluoroboranyls containing N,N-dimethylamino group studied by solvatochromic methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 199, 86–95. https://doi.org/10.1016/j.saa.2018.03.048.
(1)
Chołuj, M.; Kozłowska, J.; Bartkowiak, W. Benchmarking DFT methods on linear and nonlinear electric properties of spatially confined molecules. Int. J. Quantum Chem. 2018, 118 (17), e25666. https://doi.org/10.1002/qua.25666.
(1)
Menšík, M.; Toman, P.; Bielecka, U.; Bartkowiak, W.; Pfleger, J.; Paruzel, B. On the methodology of the determination of charge concentration dependent mobility from organic field-effect transistor characteristics. Phys. Chem. Chem. Phys. 2018, 20 (4), 2308–2319. https://doi.org/10.1039/C7CP06423C.
(1)
Kinastowska, K.; Barroso, J.; Yate, L.; Pavlov, V.; Chuvilin, A.; Bartkowiak, W.; Grzelczak, M. Cobalt oxide as a selective co-catalyst for water oxidation in the presence of an organic dye. Photochem. Photobiol. Sci. 2017, 16 (12), 1771–1777. https://doi.org/10.1039/C7PP00320J.
(1)
Bednarska, J.; Zaleśny, R.; Tian, G.; Murugan, N. A.; Ågren, H.; Bartkowiak, W. Nonempirical Simulations of Inhomogeneous Broadening of Electronic Transitions in Solution: Predicting Band Shapes in One- and Two-Photon Absorption Spectra of Chalcones. Molecules 2017, 22 (10), 1643. https://doi.org/10.3390/molecules22101643.
(1)
Zaleśny, R.; Chołuj, M.; Kozłowska, J.; Bartkowiak, W.; Luis, J. M. Vibrational nonlinear optical properties of spatially confined weakly bound complexes. Phys. Chem. Chem. Phys. 2017, 19 (35), 24276–24283. https://doi.org/10.1039/C7CP04259K.
(1)
Bednarska, J.; Zaleśny, R.; Bartkowiak, W.; Ośmiałowski, B.; Medved', M.; Jacquemin, D. Quantifying the Performances of DFT for Predicting Vibrationally Resolved Optical Spectra: Asymmetric Fluoroborate Dyes as Working Examples. J. Chem. Theory Comput. 2017, 13 (9), 4347–4356. https://doi.org/10.1021/acs.jctc.7b00469.
(1)
Chołuj, M.; Bartkowiak, W.; Naciążek, P.; Strasburger, K. On the calculations of the static electronic dipole (hyper)polarizability for the free and spatially confined H−. J. Chem. Phys. 2017, 146 (19), 194301. https://doi.org/10.1063/1.4983064.
(1)
Roztoczyńska, A.; Lipkowski, P.; Kozłowska, J.; Bartkowiak, W. About the nature of halogen bond interaction under the spatial confinement. J. Chem. Phys. 2017, 146 (15), 154304. https://doi.org/10.1063/1.4980033.
(1)
Toman, P.; Menšík, M.; Bartkowiak, W.; Pfleger, J. Modelling of the charge carrier mobility in disordered linear polymer materials. Phys. Chem. Chem. Phys. 2017, 19 (11), 7760–7771. https://doi.org/10.1039/C6CP07789G.
(1)
Kozłowska, J.; Chołuj, M.; Zaleśny, R.; Bartkowiak, W. Two-photon absorption of the spatially confined LiH molecule. Phys. Chem. Chem. Phys. 2017, 19 (11), 7568–7575. https://doi.org/10.1039/C6CP07368A.
(1)
Bednarska, J.; Zaleśny, R.; Wielgus, M.; Jędrzejewska, B.; Puttreddy, R.; Rissanen, K.; Bartkowiak, W.; Ågren, H.; Ośmiałowski, B. Two-photon absorption of BF2-carrying compounds: insights from theory and experiment. Phys. Chem. Chem. Phys. 2017, 19 (8), 5705–5708. https://doi.org/10.1039/C7CP00063D.
(1)
Medved', M.; Budzák, Š.; Bartkowiak, W.; Reis, H. Solvent Effects on Molecular Electric Properties. In Handbook of Computational Chemistry; Leszczynski, J., Kaczmarek-Kedziera, A., Puzyn, T., G. Papadopoulos, M., Reis, H., K. Shukla, M., Eds.; Springer International Publishing: Cham, 2017; pp 741–794.
(1)
Roztoczyńska, A.; Kozłowska, J.; Lipkowski, P.; Bartkowiak, W. Hydrogen bonding inside and outside carbon nanotubes: HF dimer as a case study. Phys. Chem. Chem. Phys. 2016, 18 (4), 2417–2427. https://doi.org/10.1039/C5CP04153H.
(1)
Chołuj, M.; Bartkowiak, W. Ground-state dipole moment of the spatially confined carbon monoxide and boron fluoride molecules. Chem. Phys. Lett. 2016, 663, 84–89. https://doi.org/10.1016/j.cplett.2016.09.072.
(1)
Wielgus, M.; Gordel, M.; Samoć, M.; Bartkowiak, W. Solvent Effects on the Optical Properties of PEG-SH and CTAB Capped Gold Nanorods. Acta Physica Polonica A 2016, 130 (6), 1380–1384. https://doi.org/10.12693/APhysPolA.130.1380.
(1)
Bednarska, J.; Zaleśny, R.; Arul Murugan, N.; Bartkowiak, W.; Ågren, H.; Odelius, M. Elucidating the Mechanism of Zn(2+) Sensing by a Bipyridine Probe Based on Two-Photon Absorption. J. Phys. Chem. B 2016, 120 (34), 9067–9075. https://doi.org/10.1021/acs.jpcb.6b04949.
(1)
Wielgus, M.; Samoć, M.; Bartkowiak, W. Two-photon absorption of Crystal Violet in solutions: Analysis of the solvent effect and aggregation process based on linear and nonlinear absorption spectra. Journal of Molecular Liquids 2016, 222, 125–132. https://doi.org/10.1016/j.molliq.2016.07.022.
(1)
Zaleśny, R.; Góra, R. W.; Luis, J. M.; Bartkowiak, W. On the particular importance of vibrational contributions to the static electrical properties of model linear molecules under spatial confinement. Phys. Chem. Chem. Phys. 2015, 17 (34), 21782–21786. https://doi.org/10.1039/C5CP02865E.
(1)
Matczyszyn, K.; Olesiak-Banska, J.; Nakatani, K.; Yu, P.; Murugan, N. A.; Zaleśny, R.; Roztoczyńska, A.; Bednarska, J.; Bartkowiak, W.; Kongsted, J.; Ågren, H.; Samoć, M. One- and Two-Photon Absorption of a Spiropyran–Merocyanine System: Experimental and Theoretical Studies. J. Phys. Chem. B 2015, 119 (4), 1515–1522. https://doi.org/10.1021/jp5071715.
(1)
Chołuj, M.; Kozłowska, J.; Roztoczyńska, A.; Bartkowiak, W. On the directional character of orbital compression: A model study of the electric properties of LiH–(He)n complexes. Chem. Phys. 2015, 459, 24–30. https://doi.org/10.1016/j.chemphys.2015.07.022.
(1)
Zaleśny, R.; Murugan, N. A.; Gel'mukhanov, F.; Rinkevicius, Z.; Ośmiałowski, B.; Bartkowiak, W.; Ågren, H. Toward Fully Nonempirical Simulations of Optical Band Shapes of Molecules in Solution: A Case Study of Heterocyclic Ketoimine Difluoroborates. J. Phys. Chem. A 2015, 119 (21), 5145–5152. https://doi.org/10.1021/jp5094417.
(1)
Ośmiałowski, B.; Zakrzewska, A.; Jędrzejewska, B.; Grabarz, A.; Zaleśny, R.; Bartkowiak, W.; Kolehmainen, E. Influence of Substituent and Benzoannulation on Photophysical Properties of 1-Benzoylmethyleneisoquinoline Difluoroborates. J. Org. Chem. 2015, 80 (4), 2072–2080. https://doi.org/10.1021/jo502244j.
(1)
List, N. H.; Zaleśny, R.; Murugan, N. A.; Kongsted, J.; Bartkowiak, W.; Ågren, H. Relation between Nonlinear Optical Properties of Push–Pull Molecules and Metric of Charge Transfer Excitations. J. Chem. Theory Comput. 2015, 11 (9), 4182–4188. https://doi.org/10.1021/acs.jctc.5b00538.
(1)
Zaleśny, R.; Tian, G.; Hättig, C.; Bartkowiak, W.; Ågren, H. Toward assessment of density functionals for vibronic coupling in two-photon absorption: A case study of 4-nitroaniline. J. Comput. Chem. 2015, 36 (15), 1124–1131. https://doi.org/10.1002/jcc.23903.
(1)
Wielgus, M.; Michalska, J.; Samoc, M.; Bartkowiak, W. Two-photon solvatochromism III: Experimental study of the solvent effects on two-photon absorption spectrum of p-nitroaniline. DyesPigment 2015, 113, 426–434. https://doi.org/10.1016/j.dyepig.2014.09.009.
(1)
Kozłowska, J.; Roztoczyńska, A.; Bartkowiak, W. About diverse behavior of the molecular electric properties upon spatial confinement. Chem. Phys. 2015. https://doi.org/10.1016/j.chemphys.2014.12.003.
(1)
Vivas, M. G.; Silva, D. L.; Malinge, J.; Boujtita, M.; Zaleśny, R.; Bartkowiak, W.; Ågren, H.; Canuto, S.; De Boni, L.; Ishow, E.; Mendonca, C. R. Molecular Structure – Optical Property Relationships for a Series of Non-Centrosymmetric Two-photon Absorbing Push-Pull Triarylamine Molecules. Sci. Rep. 2014, 4. https://doi.org/10.1038/srep04447.
(1)
Kozłowska, J.; Bartkowiak, W. The effect of spatial confinement on the noble-gas HArF molecule: structure and electric properties. Chem. Phys. 2014, 441, 83–92. https://doi.org/10.1016/j.chemphys.2014.07.008.
(1)
Roztoczyńska, A.; Kozłowska, J.; Lipkowski, P.; Bartkowiak, W. Does the spatial confinement influence the electric properties and cooperative effects of the hydrogen bonded systems? HCN chains as a case study. Chem. Phys. Lett. 2014, 608, 264–268. https://doi.org/10.1016/j.cplett.2014.05.102.
(1)
Kozłowska, J.; Zaleśny, R.; Bartkowiak, W. On the nonlinear electrical properties of molecules in confined spaces – From cylindrical harmonic potential to carbon nanotube cages. Chem. Phys. 2014, 428, 19–28. https://doi.org/10.1016/j.chemphys.2013.10.007.
(1)
Sowula, M.; Misiaszek, T.; Bartkowiak, W. Solvent effect on the vibrational spectrum of Michler's ketone. Experimental and theoretical investigations. Spectr. Acta Part A: Molec. Bio. Spect. 2014, 131, 678–685. https://doi.org/10.1016/j.saa.2014.04.143.
(1)
Lipkowski, P.; Kozłowska, J.; Roztoczyńska, A.; Bartkowiak, W. Hydrogen-bonded complexes upon spatial confinement: structural and energetic aspects. Phys. Chem. Chem. Phys. 2014, 16 (4), 1430–1440. https://doi.org/10.1039/C3CP53583E.
(1)
Bielecka, U.; Janus, K.; Bartkowiak, W. Nanoaggregation of p3ht in chloroform-anisole solution: relationship between morphology and electrical properties. In Proc. SPIE; 2014; Vol. 9185, pp 91850E-91850E – 7. https://doi.org/10.1117/12.2061626.
(1)
Bielecka, U.; Lutsyk, P.; Nyk, M.; Janus, K.; Samoc, M.; Bartkowiak, W.; Nespurek, S. Hole transport in organic field-effect transistors with active poly(3-hexylthiophene) layer containing CdSe quantum dots. Mater. Sci-Pol 2013, 31 (2), 288–297. https://doi.org/10.2478/s13536-013-0101-0.
(1)
Czyżnikowska, Ż.; Góra, R. W.; Zaleśny, R.; Bartkowiak, W.; Baranowska-Łączkowska, A.; Leszczyński, J. The Effect of Intermolecular Interactions on the Electric Dipole Polarizabilities of Nucleic Acid Base Complexes. Chem. Phys. Lett. 2013, 555 (0), 230–234. https://doi.org/http://dx.doi.org/10.1016/j.cplett.2012.10.087.
(1)
Bulik, I. W.; Zaleśny, R.; Bartkowiak, W.; Luis, J. M.; Kirtman, B.; Scuseria, G. E.; Avramopoulos, A.; Reis, H.; Papadopoulos, M. G. Performance of density functional theory in computing nonresonant vibrational (hyper)polarizabilities. J. Comput. Chem. 2013, 34 (20), 1775–1784. https://doi.org/10.1002/jcc.23316.
(1)
Roztoczyńska, A.; Kaczmarek-Kędziera, A.; Góra, R. W.; Bartkowiak, W. How does the Boys and Bernardi counterpoise correction scheme affects the calculated interaction-induced electric properties? Model hydrogen-bonded systems as a case study. Chem. Phys. Lett. 2013, 571 (0), 28–33. https://doi.org/10.1016/j.cplett.2013.03.081.
(1)
Vivas, M. G.; Silva, D. L.; De Boni, L.; Bretonniere, Y.; Andraud, C.; Laibe-Darbour, F.; Mulatier, J.-C.; Zaleśny, R.; Bartkowiak, W.; Canuto, S.; Mendonca, C. R. Revealing the Electronic and Molecular Structure of Randomly Oriented Molecules by Polarized Two-Photon Spectroscopy. J. Phys. Chem. Lett. 2013, 4 (10), 1753–1759. https://doi.org/10.1021/jz4007004.
(1)
Kozłowska, J.; Wielgus, M.; Bartkowiak, W. TD-DFT study on the charge-transfer excitations of anions possessing double or triple bonds. Comp. Theo. Chem. 2013, 1014, 49–55. https://doi.org/10.1016/j.comptc.2013.03.028.
(1)
Zaleśny, R.; Góra, R. W.; Kozłowska, J.; Luis, J. M.; Ågren, H.; Bartkowiak, W. Resonant and Nonresonant Hyperpolarizabilities of Spatially Confined Molecules: A Case Study of Cyanoacetylene. J. Chem. Theory Comput. 2013, 9 (8), 3463–3472. https://doi.org/10.1021/ct400410m.
(1)
Sitkiewicz, S. P.; Mikołajczyk, M. M.; Toman, P.; Zaleśny, R.; Bartkowiak, W. Towards first-principles based modeling of poly-3-alkylthiophenes: The nature of interactions in 2,2′-bithiophene dimer. Chem. Phys. Lett. 2013, 566, 67–70. https://doi.org/10.1016/j.cplett.2013.02.061.
(1)
Wielgus, M.; Zaleśny, R.; Murugan, N. A.; Kongsted, J.; Ågren, H.; Samoc, M.; Bartkowiak, W. Two-Photon Solvatochromism II: Experimental and Theoretical Study of Solvent Effects on the Two-Photon Absorption Spectrum of Reichardt's Dye. ChemPhysChem 2013, 14 (16), 3731–3739. https://doi.org/10.1002/cphc.201300695.
(1)
Olesiak-Banska, J.; Matczyszyn, K.; Zaleśny, R.; Murugan, N. A.; Kongsted, J.; Ågren, H.; Bartkowiak, W.; Samoc, M. Revealing Spectral Features in Two-Photon Absorption Spectrum of Hoechst 33342: A Combined Experimental and Quantum-Chemical Study. J. Phys. Chem. B 2013, 117 (40), 12013–12019. https://doi.org/10.1021/jp407144k.
(1)
Bednarska, J.; Roztoczyńska, A.; Bartkowiak, W.; Zaleśny, R. Comparative assessment of density functionals for excited-state dipole moments. Chem. Phys. Lett. 2013, 584, 58–62. https://doi.org/10.1016/j.cplett.2013.08.079.
(1)
Baranowska-Łączkowska, A.; Bartkowiak, W.; Góra, R. W.; Pawłowski, F.; Zaleśny, R. On the Performance of Long-Range-Corrected Density Functional Theory and Reduced-Size Polarized LPol-n Basis Sets in Computations of Electric Dipole (Hyper)Polarizabilities of π-Conjugated Molecules. J. Comput. Chem. 2013, 34 (10), 819–826. https://doi.org/10.1002/jcc.23197.
(1)
Zaleśny, R.; Bulik, I. W.; Mikołajczyk, M.; Bartkowiak, W.; Luis, J. M.; Kirtman, B.; Avramopoulos, A.; Papadopoulos, M. G. Critical assessment of density functional theory for computing vibrational (hyper)polarizabilities. In AIP Conference Proceedings; AIP Publishing, 2012; Vol. 1504, pp 655–658. https://doi.org/10.1063/1.4771780.
(1)
Góra, R. W.; Zaleśny, R.; Kozłowska, J.; Naciążek, P.; Roztoczyńska, A.; Strasburger, K.; Bartkowiak, W. Electric dipole (hyper)polarizabilities of spatially confined LiH molecule. J. Chem. Phys. 2012, 137 (9), 094307. https://doi.org/doi:10.1063/1.4748144.
(1)
Vivas, M. G.; Silva, D. L.; De Boni, L.; Bretonniere, Y.; Andraud, C.; Laibe-Darbour, F.; Mulatier, J.-C.; Zaleśny, R.; Bartkowiak, W.; Canuto, S.; Mendonca, C. R. Experimental and Theoretical Study on the One- and Two-Photon Absorption Properties of Novel Organic Molecules Based on Phenylacetylene and Azoaromatic Moieties. J. Phys. Chem. B 2012, 116 (50), 14677–14688. https://doi.org/10.1021/jp310731t.


(1)
Medved', M.; Budzák, Š.; Bartkowiak, W.; Reis, H. Solvent Effects on Molecular Electric Properties. In Handbook of Computational Chemistry; Leszczynski, J., Ed.; Springer Netherlands, 2015; pp 1–54. https://doi.org/10.1007/978-94-007-6169-8_44-1.
(1)
Wielgus, M.; Bartkowiak, W. Solvent Effect on Two-Photon Absorption of Organic Molecules. In Handbook of solvents; Wypych, G., Ed.; ChemTec: Toronto, New York, 2014; Vol. 1, pp 695–702.
(1)
Wielgus, M.; Kozłowska, J.; Bartkowiak, W. Chemia Kwantowa w Molekularnej Optyce Nieliniowej. Wiad. Chem. 2012, 66 (1–2), 1–18.
(1)
Bartkowiak, W.; Zaleśny, R. SOS Methods in Calculations of Electric NLO Properties. In Non-linear optical properties of matter: from molecules to condensed phases; Papadopoulos, M. G., Sadlej, A. J., Leszczynski, J., Eds.; Springer, 2006; pp 129–150.
(1)
Bartkowiak, W. Solvatochromism and Nonlinear Optical Properties of Donor-Acceptor π-Conjugated Molecules. In Non-linear optical properties of matter: from molecules to condensed phases; Papadopoulos, M. G., Sadlej, A. J., Leszczynski, J., Eds.; Springer, 2006; pp 299–318.
(1)
Bartkowiak, W.; Skwara, B.; Zaleśny, R. The Influence of Solvent on the Two-Photon Absorption Cross Section and Hyperpolarizability of Molecules Exhibiting Large Solvatochromic Shifts. In Computational Aspects of Electric Polarizability Calculations: Atoms, Molecules and Clusters; Maroulis, G., Ed.; IOS Press, 2004; pp 317–324.
(1)
Bartkowiak, W.; Lipiński, J. Ciągłe i Dyskretne Modele Rozpuszczalnika w Badaniach Struktury Elektronowej. Wiad. Chem. 2000, 54 (3–4), 183–202.

Your name: *
Your phone: *
Your e-mail: *
Contact Preference:
Title of Message: *
Text: *
Please, Enter the Code